

MMTB Operator Manual and Procedure

1.0 <u>Hymark is not liable in part or in whole for any personal or equipment damage caused by of the following:</u>

- Unintended use of the machine
- Improperly mounting, installing, maintaining or operating the machine.
- Disregarding the hints, notes and warnings concerning the transportation storing mounting installing using or maintaining the machine.
- Changing the construction or assembly of the machine.
- Improper repair or replacement.
- Acts of God or damage caused by impact of materials

Note!

Before installation check the machine for any damages or defects Eliminate any minor damages or defects before installing or running the gauge. Contact the manufacturer if you cannot eliminate the defect yourself.

Important!

The system is shipped either fully assembled or with only requirement of mount the system to 2 provided height adjustable stands and or casters. It is required that the table be level, parallel straight, for proper operation.

Danger!

Beware of danger caused by second or additional personal while testing and running the machine. Before installation and while running the machine ensure that no other person is within the danger areas of the gauge.

2.0 General Installation Instructions

For shipping purposes, the carriage has been removed from the guide rail.

Remove the bumper stop bracket using an M5 allen wrench to loosen the (2) M5 cap screws.

Gently roll the carriage the carriage onto the guide rail by lining up the steel roller bearings on the carriage with the steel rods on the guide rail.

Note: Ensure that the faceplate doesn't come in contact with the table or the back fence or damage could occur.

Once the carriage is on the guide rail, re-attach the bumper stop bracket.

During transit, the faceplace may have shifted and will need to be re-aligned before the MMTB will be deemed accurate.

- Loosen the (4) M8 set screws and the (4) M8 cap screws using an M4 allen wrench and an M6 allen wrench, respectively.
- Clamp the faceplate to the end contact place using c-clamps or alike. If clamps have a serrated or knurled edge, use a soft cloth or alike to prevent marring the plates.

Note: The more surface area that is clamped, the more precisely aligned the plates will be.

© Once clamped, use an M4 allen wrench to **snug** the (4) M8 set screws. **DO NOT OVERTIGHTEN!**

Note: Use a thread locker to ensure that the set screws don't loosen over time.

Note: Use a thread locker to ensure that the screws don't loosen over time.

Tonce all screws are tight, remove the clamps.

3.0 Operation of unit in application

- After proper installation and mounting, the display should read in 000.001in increments or 0.01mm. Reference the system by joining moving carriage plate and the stationary end plate by moving the carriage to the left until contact. (a short cut single page set-up for this display is located on the page following page Important: A complete display manual is attached to the end of this document)
- Move the carriage away from the end plate at an appropriate distance to insert the cut material to be measured.
- Place material to be measured on the table and push to the back fence and forward to the stationary stop to ensure correct measuring.
- Slide the carriage forward toward the end of the material until contact is made and observe the measurement on the display.

Major Components List

- LD142-r-0,2 display with integrated sensor
- MT25 magnetic scale
- 0.0.294.03 steel roller bearings

Maintenance Requirements

- To not use any acids or alkaline solutions. Do not use any highpressure water jet cleaners.
- Clean with compressed air along the double steel rods as needed, suitable lubricant is "3-N-1 Oil" or like product may be used as need on the stainless steel rods.
- The LD142 battery requirement is standard "C" type battery that may need replaced every 9 −12 months.

4.3 Function of the keypads

*Complete display manual provided by the LIKA (Display OEM) is attached in rear of manual.

P : Program (programming/change parameters)

↑ : UP (increase value of selected digit)

Shift left (select digit)Save (save data)

4.4 Setting Datum (Referencing) the system

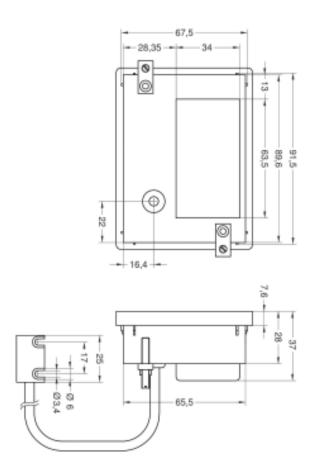
By setting the datum or referencing the system, the operator is setting up the system so that the distance from the stop face to the cutting blade is correctly displayed in the digital readout.

- 1. Move the stop to a known location using a standard or other suitable method.
- 2. Press the * button and hold for 3 seconds.
- 3. The display will show "rESEt".
- 4. Press the * button again to show the current position flashing. Note: at this point the referencing can be cancelled by pressing "P".
- 5. Press the * button again to confirm the reference reset by displaying "done" momentarily. This will set the display to the pre-entered datum value

4.5 Entering / changing datum value

Push P and ↑ buttons together to display datum value "rEF'. Use ← and ↑ keys to change digits to the correct value and save with * button. Push P button to exit "datum change" mode. This feature is only enabled if "F_rEF" parameter is set to "yES" (see LD142 manual in rear).

4.6 Setting the Display Mode (switching from inch to metric via keypad)


The display can be easily changed to display inch or metric values by pressing the ← button for 3 seconds. Note: this feature is active when "F_mmI" parameter is set "yES" (see LD142 manual in rear).

4.7 Changing from Absolute Measuring to Incremental Measuring

The display can be changed from absolute measuring (unit displays actual distance from blade) to incremental or relative measuring (unit displays distance from last position). Pressing the **P** and * buttons together toggles these modes. This feature is active only when "F_rEL" is set to "yES". For nearly all applications, absolute measuring will be required. Note: Setting the display to zero in incremental mode is not affecting the real absolute value

*Complete display manual provided by the LIKA (Display OEM) is attached in rear of manual.

5. Dimensional Drawings for display (in mm)

6. Technical Data

LCD display : 7 digits plus sign symbol , 11 mm high Battery : Commonly available "C" size , 1.5V

Consumption : ca 1mA at 1.5V

Operating temperature : 5°C to 50°C (41°F to 122°F)
Operating Speed : max. 2.5m/sec (100in/sec)

Resolution : 0.001in

Housing : Black metal for panel mounting

7. Integrated Sensor Specifications

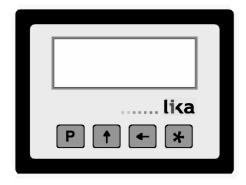
Technical Data:

Cable Length : 0.1 to 1.5 m Protection : IP67

Operating Temperature : 5°C - 50°C (41°F-122°F)

Orientation : Any

Bend Radius : min 60mm (2.5in)
Gap Tape/Sensor : max 1mm (0.04in)



User manual

LD140-M7 + SM25 LD141-M7-R-... LD142-M7-R-...

Description

This manual describes the LD14x battery display series and the sensors of the SM25 series. The purpose of this system is to display linear or angular displacements on industrial machines and on automation systems. The measurement system includes a battery powered LCD display, magnetic tape and a magnetic sensor. As the sensor is moved along the magnetic tape, it detects the displacement which is shown on the display. The flexibility of the tape allows it to be used for both linear and angular applications.

Chapters

- 1 Safety summary
- 2 Identification
- 3 Installation
- 4 Mounting recommendations
- 5 Electrical connections
- 6 Setup
- 7 RS232 serial interface (only with option I1)
- 8 Dimensional drawings and cut-out

1 - Safety summary

We strongly recommend carefully reading this user manual and following the installation guidelines:

 Sensor head should be installed as close as possible to the display.

- Avoid running the sensor cable near high voltage power cables (e.g. drive cables).
- Avoid mounting sensor head near capacitive or inductive noise sources such as relays, motors, and switching power supplies.

Connect according to chapter 5.

2 - Identification

The display and sensor can be identified by the label's data (ordering code, serial number). This information is listed in the delivery document. For technical features please refer to the product catalogue.

3 - Installation

Install the product according to the protection level provided.

Protect the system against knocks, friction, solvents, temperatures under -0°C (32°F) and over $+60^{\circ}\text{C}$ (+140°F).

Be sure that the system is mounted where hard or sharp objects (e.g. metal chips) do not come into contact with the magnetic scale and the bottom of the sensor head. If these conditions cannot be avoided provide a wiper or pressurized air.

4 - Mounting recommendations

4.1 Display

Push the display into the cut-out without panel clips.

Install panel clips on the display's housing and screw until fixed and stable.

Power supply by 1.5V commercial battery type **C** (or AM2 / BABY / LR14 / MN1400 / SP/HP11).

4.2 Magnetic tape

See manual supplied with the magnetic tape.

4.3 Sensor mounting

4.3.1 Sensor SM25-R (rectangular)

Sensor can be fixed by means of two M3 screws over the buttonholes. Make sure that the gap between sensor and tape is in respect with (fig. 1) along the total measuring length. Avoid contact between the parts. You can check planarity and parallelism between sensor and magnetic tape using a feeler gauge.

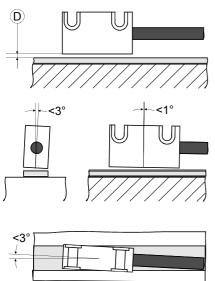
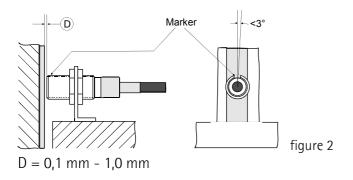



figure 1

D = 0.1 mm - 1.0 mm

4.3.2 Sensor SM25-C (circular)

The sensor can be fixed in a corresponding mounting hole by means of the two nuts. Make sure that the gap between sensor and tape is in respect with (fig. 2) along the total measuring length. **Observe the correct alignment of the marker on the tape.** Avoid contact between the parts. You can check planarity and parallelism between sensor and magnetic tape using a feeler gauge.

5 - Electrical connections

5.1 SM25 sensor (only LD140)

Plug in the sensor's Mini-DIN connector (circular) on backside of the display.

5.2 RS232 serial interface (only with option I1) Connect PC to LD14x with NULL MODEM COMPUTER AT CROSS OVER cable (9 pin female - 9 pin female) available in commerce.

Electrical cable connection:

Pin PC	Function	Pin LD14x
1		
2	Rx	3
3	Tx	2
4	DTR	6 *
5	GND	5
6	DSR	
7	RTS	8 *
8	CTS	
9		

^{*} Power supply has to be provided to RS232 interface to avoid battery consummation. If not connect to the PC provide power supply (8-15Vdc) to pin 6 or 8. External supply isn't needed if using a Modem computer cable!

6 - Setup

6.1 Key's function

↑ : UP (select value)

←: Shift links (select digit)

* : Save (save data)

P: Program (programming/change parameter)

6.2 Key combinations / Quick functions6.2.1 Set datum (reference)

Push * key for 3 sec. to access reset function ("rESEt" will be displayed).

Push **P** key to exit function (no reset).

Push * key twice to confirm datum value ("donE" will be displayed).

Display value = rEF + OFS1 + OFSx (where OFSx is the actually set Offset value).

This function is enabled only if "F_rSt" parameter is set "yES".

6.2.2 Incremental measurement

Push **P** and * key simultaneously to switch from absolute measurement to incremental.

Zero setting in incremental modes (see 6.2.1) does not change absolute value in the background.

The function is enabled only if "F_rEL" parameter is set "yES".

6.2.3 Mm/inch display modes

Mm/inch display modus can be changed by pushing key for 3 s. The function is enabled only if "F_mml" parameter is set "yES".

6.2.4 Offset value modification

Push P and ← keys simultaneously to display 1. Offset value (OFS1). Use ← and ↑ keys to change value and save with * key. Further Offset values OFS2 and OFS3 can be changed only in setup menu. Offset function is enable if "F_oFS" parameter is set "vES".

← key allows to scroll OFS1, OFS2 and OFS3 values.

OFS1 = actual value + OFS1 + rEF

OFS2 = actual value + OFS1 + OFS2 + rEF

OFS3 = actual value + OFS1 + OFS3 + rEF

6.2.4.1 Fractional offset display

The fractional inch display mode allows to set offset values (OFS) in the following way:

- 1st digit blinking → increases $\frac{1}{64}$ " pushing \uparrow key.
- 2^{nd} digit blinking \rightarrow increases $\frac{1}{32}$ pushing \uparrow key.
- 3^{rd} digit blinking \rightarrow increases $^{1}/_{16}"$ pushing \spadesuit key.
- 4th digit blinking → increases $\frac{1}{8}$ " pushing \uparrow key.
- 5^{th} digit blinking \rightarrow increases 1" pushing \uparrow key.
- 6^{th} digit blinking \rightarrow increases 10" pushing \uparrow key.

6.2.5 Datum modification

Push simultaneously P and \uparrow keys to display datum value rEF. Use \leftarrow and \uparrow keys to change value and save with * key.

This function is enabled only if "F_rEF" parameter is set "yES".

6.3 Setup / Parameter setting

Push **P** key for 3 s to enter setup and **"SEtUP"** is displayed.

Push ★ key to enter **MENU 1** (parameters)

Push * key to enter **MENU 2** (RS232 serial interface)

Push **P** key to access the next Parameter and Parameter setting.

Push **P** key for 3 s to exit the setup at any point.

6.3.1 Default parameters (factory settings)

All default values are written in **BOLD** characters. The display can be reset to default parameters with the following procedure:

- take out battery and wait for 10 s.
- while putting in the battery push * key ("dEFPar" is displayed)

6.3.2 Parameter list MENUE 1

Unit Measurement unit [dEC, FrEE, dG1, dG2, ldEC, lfrct] Sets the measurement unit and the display mode.

dEC = linear measurement display (decimal)

FrEE = display with conversion factor

 $dG1 = angular display (-\infty..-0,1°..0,0°..+0,1°..+\infty)$

dG2 = angular display (..359,9°..0,0°..359,9°..0,0°..)

IdEC = inch display mode

Ifrct = fractional inch mode (eq. 12.31.64 = $12^{31}/_{64}$)

* = save, P = next parameter, P for 3 s. = exit

lika

COn only with Unit = FrEE, dG1, dG2

Allows to set a free conversion factor to display non-metric units or angles.

Valeu range:

FrEE = 0.00001 - 1.00000dG1, dG2 = 0.00001 - 9.99999

Example 1:

Want to display a 90° angle (from 0° to 90°) with 0,1° resolution on a round table with 785,4 mm circumference.

The measurement length on 360° is 785,4 mm, though on 90.0° it is 785,4 / 4 = 196.35.

COn = 900 : 19635 = 0.045836

Example 2:

Want to display angles on a magnetic ring with diameter 114,5 mm.

The circumference is 114.5 * 3.14 = 359.53 mm

COn = 3600 : 35953 = 0.10013

* = save, P = next parameter, P for 3 s. = exit

rES Resolution

(only with Unit = dEC, FrEE, dG1, dG2, IdEC) Sets the resolution to be displayed.

Unit = dEC, FrEE, dG1, dG2 = 0.001, 0.005, **0.01**, 0.05, 0.1, 0.5, 1 Unit = IdEC = 0.0001, 0.0005, **0.001**, 0.005, 0.01, 0.05, 0.1

* = save, P = next parameter, P for 3 s. = exit

dlr Counting direction [uP, dn]

uP = up (standard direction)

dn = down (inverted direction)

* = save, P = next parameter, P for 3 s. = exit

6.3.3 Additional function of MENUE 1

F_mml mm/inch function [yES, no]

Enables the mm/inch function (by pushing ← key)

yES = enabled

no = disabled

* = save, P = next parameter, P for 3 s. = exit

F_rEL Incremental measurement function [yES, no] Enables incremental measurement function (by pushing **P** and ***** keys).

yES = enabled

no = disabled

* = save, P = next parameter, P for 3 s. = exit

F_rSt Datum function [yES, no]

Enables datum function (by pushing * key).

yES = enabled

no = disabled

* = save, P = next parameter, P for 3 s. = exit

F_rEF Datum modification function [yES, no] Enables reference modification function (by pushing **P** and **↑** key).

yES = enabled

no = disabled

* = save, P = next parameter, P for 3 s. = exit

F_oFS Offset modification function [yES, no] Enables offset modification function (by pushing **P** and **←** keys).

yES = enabled

no = disabled

* = save, P = next parameter, P for 3 s. = exit

rEF Datum value [-999999, 999999]

Absolute reference value for the measuring system. This value is displayed by pushing * key for 3 s. (displayed value includes previously set offset values).

* = save, P = next parameter, P for 3 s. = exit

OFS1 Offset1 value [-999999, 999999]

First offset value (e.g. tool correction). This value is added to actual value (see 6.2.3.)

* = save, P = next parameter, P for 3 s. = exit

lika

OFS2 Offset2 value [-999999, 999999]

Second Offset value. This value is added to actual value and OFS1.

* = save, P = next parameter, P for 3 s. = exit

OFS3 Offset3 value [-999999, 999999]

Third Offset value. This value is added to actual value, OFS1 and OFS2.

* = save, P = next parameter, P for 3 s. = exit

When the setup is completed the display shows "rESEt"

Push * key twice to reset the display and quit the setup. "donE" will be displayed.

Push **P** key quit the setup without resetting the display. **"no rSt"** will be displayed.

6.3.4 Parameter list MENUE 2

Ad xx Device address [01, 31]

Setting of device address (only if ordered with serial interface (option I1).

For setting use \leftarrow and \uparrow keys.

* = save, P = next parameter

H_cntr Hour meter (1/10 h)

Elapsed time indication (display connected to battery). Resolution is 1/10 hour (6 minutes).

* = save, P = next parameter

7 - RS232 serial interface (option 11)

If the display is provided with RS232 serial interface, the following commands can be used.

7.1 RS232 parameters

9600 Baud, 8Bit, no Parity, 1 Stop bit, Xon/Xoff

7.2 Serial commands

Serial commands must have the following structure:

ADCMND=X

where:

: PC keyboard symbol

AD: device address (00 to 31) 2 digit CMND: command (see command list) X: value range (see command list)

Upon receipt of a wrong command the display will answer with the same command + ? and checksum (e.g. sent command: |02azs → answer |02azs?EF)
Any common terminal program can be used for communication with LD140 (e.g. Hyperterminal). Commands will be send after confirmation by ENTER key (carriage return).

Answers are structured as follows:

ADCMND:SXXXXXXXXXCK

where:

AD: device address CMND: command XXXXXXXX: value CHKS: checksum

The checksum is equal to the least significant byte of the summing the hex values of all characters transmitted.

Example:

The displayed position is 8,29. The position of device with address 01 is read by means of the |01TPOS command.

The answer is: 01TPOS:+000008299F

The sum of hex values of all characters is the following:

The least significant byte of 39F is **9F** which is the checksum.

7.2.1 Command list

(below the device address is indicated with AD)

Zeroing of device address

OORSET

Address of all connected devices is set to zero (0).

Device address [1, 31]

|00|NIT=X

Sets address of all connected devices to value X.

Display device address

|00DADR

Displays device address until **P** key is pushed.

Change device address [1, 31]

ADRADR=X

Changes actual device address AD to X.

Answer: ADTADR:+XCHKS (CHKS is checksum and X is value).

Read actual position

ADTPOS

Reads actual position of device **AD** (resolution of value is 0,01mm or 0,001 inch depending on settings).

Change counting direction [0, 1]

ADRDIR=X

Sets counting direction.

 $X=0 \rightarrow uP = standard direction$

 $X=1 \rightarrow dn = inverted direction$

Answer: ADTDIR:+0000000XCHKS

Read counting direction

ADTDIR

Reads the actual counting direction.

 $X=0\rightarrow uP$, $X=1\rightarrow dn$

Answer: ADTDIR:+0000000XCHKS

Measurement unit [0, 5]

ADRUNI=X

Sets the measurement unit and display mode.

 $X=0 \rightarrow dEC = decimal mode$

 $X=1 \rightarrow FrEE = display with conversion factor$

 $X=2 \rightarrow dG1 = angular (-\infty..-0,1°..0,0°..+0,1°..+\infty)$

 $X=3 \rightarrow dG2 = angular (...359,9^{\circ}...0,0^{\circ}...359,9^{\circ}...0,0^{\circ}...)$

 $X=4 \rightarrow IdEc = decimal inch display mode$

 $X=5 \rightarrow Ifrct = fractional (es. 12.31.64 = 12" ³¹/₆₄)$

Answer: ADTUNI:+0000000XCHKS

Read measurement unit

ADTUNI

Reads the status of measurement unit.

Answer: ADTUNI:+0000000XCHKS

Resolution [1, 5, 10, 50, 100, 500, 1000]

ADRRES=X

Sets linear resolution in mm or inch.

 $X=1 \rightarrow 0.001/0.0001$, $X=5 \rightarrow 0.005/0.0005$,

 $X=10 \rightarrow 0.01/0.001$, $X=50 \rightarrow 0.05/0.005$,

 $X=100 \rightarrow 0.1/0.01$, $X=500 \rightarrow 0.5/0.05$,

 $X=1000 \rightarrow 1/0.1$

Answer: ADTRES:+XCHKS

Read resolution

ADTRES

Reads value of actual resolution (see values above).

Answer: ADTRES:+XCHKS

Free conversion factor COn

[with FrEE 0,00001 - 1,00000 / with dG1, dG2 0,00001 - 9,99999]

ADRFRE=X

Sets free conversion factor COn (see chapter 6.3.1).

Answer: ADTFCO:+XCHKS

Read COn conversion factor

ADTFCO

Reads value of actual COn factor.

Answer: ADTFCO:+00X.XXXXCHKS

Display mm/inch display mode [0, 1]

ADRMMI=X

Changes display mode from mm to inch.

 $X=0 \rightarrow mm, X=1 \rightarrow inch$

Answer: ADTMMI:+0000000XCHKS

Read mm/inch display mode

ADTMMI

Reads status of mm/inch display mode.

 $X=0 \rightarrow mm$, $X=1 \rightarrow inch$

Answer: ADTMMI:+0000000XCHKS

Incremental measurement function [0, 1]

ADRRLA=X

Enables incremental measurement function (key combination **P** and *****).

 $X=0 \rightarrow oFF$, $X=1 \rightarrow on$

Answer: ADTRAE:+0000000XCHKS

Read incremental measurement

ADTRAE

Reads status of incremental measurement function.

 $X=0 \rightarrow oFF, X=1 \rightarrow on$

Answer: ADTRAE:+0000000XCHKS

Incremental measurement [0, 1]

ADRRLA=X

Sets from absolute display mode to incremental (relative).

 $X=0 \rightarrow oFF, X=1 \rightarrow on$

Answer: ADTRAE:+0000000XCHKS

Read incremental measurement

ADTRLA

Reads status of absolute/incremental display mode.

 $X=0 \rightarrow oFF, X=1 \rightarrow on$

Answer: ADTRLA:+0000000XCHKS

Datum function [0, 1]

ADRRSE=X

Enables Datum function (by pushing * key).

 $X=0 \rightarrow oFF, X=1 \rightarrow on$

Answer: ADTRSE:+0000000XCHKS

Read Datum function

ADTRSE

Reads status of Datum function.

 $X=0 \rightarrow oFF, X=1 \rightarrow on$

Answer: ADTRSE:+0000000XCHKS

Datum value modification [0, 1]

ADRRFE=X

Enables Datum value modification (by key

combination **P** and \spadesuit). X=0 \rightarrow oFF, X=1 \rightarrow on

Answer: ADTRFE:+0000000XCHKS

Read Datum value modification

ADTRFE

Reads status of Datum value modification.

 $X=0 \rightarrow oFF, X=1 \rightarrow on$

Answer: ADTRFE:+0000000XCHKS

Offset function [0, 1]

ADROFE=X

Enables Offset function (by key combination P and

←

 $X=0 \rightarrow oFF$, $X=1 \rightarrow on$

Answer: ADTOFE:+000000XCHKS

Read Offset function

ADTOFE

Reads status of Offset function.

 $X=0 \rightarrow oFF, X=1 \rightarrow on$

Answer: ADTOFE:+0000000XCHKS

Datum value [-999999, 999999]

ADRREF=X

Absolute Reference value for the measurement system. (the value has resolution 0,01mm or 0,001

inch depending on the display settings).

Answer: ADRREF:XCHKS

Read Datum value

ADTREF

Reads actual Datum value.

Answer: ADTREF:XCHKS

Offset1 value [-999999, 999999]

ADROF1=X

Sets Offset1 (OFS1) value (the value has resolution

0,01).

Answer: ADROF1:XCHKS

Read Offset1 value

ADTOF1

Reads actual Offset1 value. Answer: ADTOF1:XCHKS

Offset2 value [-999999, 999999]

ADROF2=X

Sets Offset2 (OFS2) value (the value has resolution

0,01).

Answer: ADROF2:XCHKS

Read Offset2 value

ADT0F2

Reads actual Offset2 value. Answer: ADTOF2:XCHKS

Offset3 value [-999999, 999999]

ADROF3=X

Sets Offset3 (OFS3) value (the value has resolution

0,01).

Answer: ADROF3:XCHKS

Read Offset3 value

ADT0F3

Reads actual Offset3 value. Answer: ADTOF3:XCHKS

8 - Cut-out

8.1 LD140 and LD142

Provide a 94 x 68 mm (w x h) cut-out.

8.2 LD141

Check details on product catalogue.

Rev.	Man.Vers.	Description	
0	1.0	1 [^] issue	
	4.1	SW + Manual update	
3	4.2	Chap.5 correction	
4	4.3	Reset function correction (chap. 6.2.1)	

....lika

LIKA Electronic

Via S. Lorenzo, 25 - 36010 Carrè (VI) - Italy

Tel. +39 0445 382814 Fax +39 0445 382797

Italy: eMail info@lika.it - www.lika.it World: eMail info@lika.biz - www.lika.biz